Sains Malaysiana 53(8)(2024): 1953-1968

http://doi.org/10.17576/jsm-2024-5308-18

 

Synthesis, Molecular Docking and Heme Detoxification of Pyrano[2,3-c]pyrazole-aminoquinoline Hybrids as Potential Antimalarial Agents

(Sintesis, Dok Molekul dan Penyahtoksikan Hem Hibrid Pirano[2,3-c]pirazola-aminokuinolina sebagai Potensi Agen Antimalaria)

 

LEKKALA RAVINDAR1, NG YAN HONG2, KHAIRUL AZREENA BAKAR2, AHMAD FADHLURRAHMAN BIN AHMAD HIDAYAT3, SHEVIN RIZAL FEROZ2, SAKI RAHEEM4, SITI AISHAH HASBULLAH1 & NURUL IZZATY HASSAN1,*

 

1Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

3Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia

4School of Life Sciences, University of Westminster, 115 New Cavendish Street, W1W 6UW, London, United Kingdom

 

Received: 11 March 2024/Accepted: 4 July 2024

 

Abstract

Malaria, an infectious disease that spreads widely and can kill people, is still a problem for global health. This study adds to the list of possible solutions by making a group of new pyrano[2,3-c]pyrazole-aminoquinoline hybrids. Here, five novel hybrids were synthesized by covalently linking the scaffolds of 4-aminoquinoline and pyrano[2,3-c]pyrazoles via an ethyl linker. Molecular docking was used to study each hybrid's and standard chloroquine ability to bind to Plasmodium falciparum lactate dehydrogenase enzyme (PfLDH), an important enzyme in the parasite's glycolytic pathway. The hybrid compounds had a stronger binding affinity than the standard chloroquine. Compound 4c (-7.79 kcal/mol) and 4d (-7.73 kcal/mol) had strong interactions with PfLDH through hydrogen bonds, hydrophobic interactions, and Van der Waals interactions involving Val-26, Ile-54, Ala-98, Phe-100, Lys-118, Ile-119, and Glu-122. Additionally, the study explored the interaction between five hybrids and hemin, a pivotal component in the heme detoxification pathway of malaria parasites. The isothermal titration calorimetry (ITC) showed that the hybrids had different strengths when binding to hemin. This was because their structures were different. Hybrids 4a and 4b showed a strong affinity for hemin with Ka values of (1.43 ± 0.60) × 106 M-1 and (1.64 ± 0.97) × 106 M-1, respectively, indicating that they might be able to stop the disruption process. In contrast, hybrids 4c, 4d, and 4e interacted with hemin with markedly lower affinities. This study provides insights into the promising antimalarial properties of pyrano[2,3-c]pyrazole-aminoquinoline hybrids. It details their interactions with PfLDH and hemin and offers potential avenues for developing novel therapeutic strategies against malaria.

 

Keywords: Isothermal titration calorimetry; Malaria; molecular docking; pyrano[2,3-c]pyrazole-aminoquinoline hybrids

 

Abstrak

Malaria, sejenis penyakit berjangkit yang merebak secara meluas dan membunuh manusia, masih menjadi masalah kesihatan global. Kajian ini mencari penyelesaian alternatif dengan menghasilkan kumpulan hibrid pirano[2,3-c]pirazola-aminokuinolina baharu. Lima sebatian hibrid baru telah disintesis dengan menghubungkan kerangka 4-aminokuinolina dan pirano[2,3-c]pirazola secara kovalen melalui penghubung etil. Pendokkan molekul digunakan untuk melihat keupayaan hibrid dan piawai klorokuina untuk mengikat enzim Plasmodium falciparum laktat dehidrogenase (PfLDH), enzim penting dalam laluan glikolitik parasit. Sebatian hibrid menunjukkan pertalian pengikatan yang lebih kuat berbanding klorokuina piawai. Sebatian 4c (-7.79 kcal/mol) dan 4d (-7.73 kcal/mol) mempunyai interaksi yang kuat dengan PfLDH melalui ikatan hidrogen, interaksi hidrofobik dan Van der Waals yang melibatkan asid amino Val-26, Ile-54, Ala-98, Phe-100, Lys-118, Ile-119 dan Glu-122. Selain itu, kajian ini meneroka interaksi antara lima hibrid dan hemin, komponen penting dalam laluan detoksifikasi hem parasit malaria. Kalorimetri titrasi isoterma (ITC) menunjukkan perbezaan kekuatan dalam ikatan hibrid terhadap hemin. Hal ini disebabkan struktur hibrid adalah berbeza. Hibrid 4a dan 4b memberikan keafinan yang kuat untuk hemin dengan nilai Ka (1.43 ± 0.60) × 106 M-1 dan (1.64 ± 0.97) × 106 M-1, masing-masing, menunjukkan keupayaan perencatan. Sebaliknya, hibrid 4c, 4d dan 4e berinteraksi dengan hemin dengan keafinan yang lebih rendah. Kajian ini menunjukkan potensi antimalaria bagi hibrid pirano[2,3-c]pirazola-aminokuinolina. Interaksi dengan PfLDH dan hemin secara lebih mendalam mampu membuka peluang untuk membangunkan strategi terapeutik baharu terhadap malaria.

 

Kata kunci: Hibrid pirano[2,3-c]pirazola-aminokuinolina; kalorimetri titrasi isoterma; malaria; pendokkan molekul

 

REFERENCES

Abdi, B., Fekadu, M., Zeleke, D., Eswaramoorthy, R. & Melaku, Y. 2021. Synthesis and evaluation of the antibacterial and antioxidant activities of some novel chloroquinoline analogs. Journal of Chemistry 2021: 2408006. 

Adeleke, A.A., Zamisa, S.J., Islam, M.S., Olofinsan, K., Salau, V.F., Mocktar, C. & Omondi, B. 2021. Quinoline functionalized schiff base silver (I) Complexes: Interactions with biomolecules and in vitro cytotoxicity, antioxidant and antimicrobial activities. Molecules 26(5): 1205.

Alven, S. & Aderibigbe, B. 2019. Combination therapy strategies for treating Malaria. Molecules 24(19): 3601.

Bekhit, A.A., Nasralla, S.N., El-Agroudy, E.J., Hamouda, N., El-Fattah, A.A., Bekhit, S.A., Amagase, K. & Ibrahim, T.M. 2022. Investigation of the anti-inflammatory and analgesic activities of promising pyrazole derivative. European Journal of Pharmaceutical Sciences 168: 106080.

Birkholtz, L.M., Bornman, R., Focke, W., Mutero, C. & de Jager, C. 2012. Sustainable malaria control: Transdisciplinary approaches for translational applications. Malaria Journal 11: 431.

Biswas, S.K. & Das, D. 2022. One-pot synthesis of pyrano[2,3-c] pyrazole derivatives via multicomponent reactions (MCRs) and their applications in medicinal chemistry. Mini-Reviews in Organic Chemistry 19: 552-568.

Bulusu, G. & Desiraju, G.R. 2020. Strong and weak hydrogen bonds in protein–ligand recognition. Journal of the Indian Institute of Science 100(1): 31-41.

Cazelles, J., Cosledan, F., Meunier, B. & Pellet, A. 2011. Dual molecules containing peroxy derivative, the synthesis and therapeutic applications thereof. https://patents.google.com/patent/US7947701B2/en

Costa, C.A., Lopes, R.M., Ferraz, L.S., Esteves, G.N.N., Di Iorio, J.F., Souza, A.A., de Oliveira, I.M., Manarin, F., Judice, W.A.S., Stefani, H.A. & Rodrigues, T. 2020. Cytotoxicity of 4-substituted quinoline derivatives: Anticancer and antileishmanial potential. Bioorganic & Medicinal Chemistry 28(11): 115511.

Dorababu, A. 2021. Quinoline: A promising scaffold in recent antiprotozoal drug discovery. ChemistrySelect 6(9): 2164-2177.

Du, X., Li, Y., Xia, Y-L., Ai, S-M., Liang, J., Sang, P., Ji, X-L. & Liu, S-Q. 2016. Insights into protein–ligand interactions: mechanisms, models, and methods. International Journal of Molecular Sciences 17(2): 144.

García-Cañaveras, J.C., Lancho, O., Ducker, G.S., Ghergurovich, J.M., Xu, X., da Silva-Diz, V., Minuzzo, S., Indraccolo, S., Kim, H., Herranz, D. & Rabinowitz, J.D. 2021. SHMT inhibition is effective and synergizes with methotrexate in T-cell acute lymphoblastic leukemia. Leukemia 35: 377-388.

Gómez-Jeria, J-S., Robles-Navarro, A., Kpotin, G., Gómez-Jeria, J.S., Kpotin, G.A., Garrido-Sáez, N. & Gatica-Díaz, N. 2020. Some remarks about the relationships between the common skeleton concept within the Klopman-Peradejordi-Gómez QSAR method and the weak molecule-site interactions. Chemistry Research Journal 5(2): 32-52.

Greenwood, B.M., Fidock, D.A., Kyle, D.E., Kappe, S.H., Alonso, P.L., Collins, F.H. &
Duffy, P.E. 2008. Malaria: Progress, perils, and prospects for eradication. Journal of
Clinical Investigation
11(4): 1266-1276.

Guantai, E.M., Ncokazi, K., Egan, T.J., Gut, J., Rosenthal, P.J., Bhampidipati, R., Kopinathan, A., Smith, P.J. & Chibale, K. 2011. Enone- and chalcone-chloroquinoline hybrid analogues: in silico guided design, synthesis, antiplasmodial activity, in vitro metabolism, and mechanistic studies. Journal of Medicinal Chemistry 54(10): 3637-3649.

Hasan, A., Mazumder, H.H., Chowdhury, A.S., Datta, A. & Khan, A. 2015. Molecular-docking study of malaria drug target enzyme transketolase in Plasmodium falciparum 3D7 portends the novel approach to its treatment. Source Code for Biology and Medicine 10: 7.

Infield, D.T., Rasouli, A., Galles, G.D., Chipot, C., Tajkhorshid, E. & Ahern, C.A. 2021. Cation-π interactions and their functional roles in membrane proteins. Journal of Molecular Biology 433(17): 167035.

Kaur, R. & Kumar, K. 2021. Synthetic and medicinal perspective of quinolines as antiviral agents. European Journal of Medicinal Chemistry 215: 113220.

Kucharski, D.J., Jaszczak, M.K. & Boratyński, P.J. 2022. A review of modifications of quinoline antimalarials: Mefloquine and (hydroxy)chloroquine. Molecules 27(3): 1003.

Li, Z-H., Yin, L-Q., Zhao, D-H., Jin, L-H., Sun, Y-J. & Tan, C. 2023. SAR studies of quinoline and derivatives as potential treatments for Alzheimer's disease. Arabian Journal of Chemistry 16: 104502.

Loeb, F., Clark, W.M., Coateny, G.R., Coggeshall, L.T., Dieuaide, F.R., Dochez, A.R., Hankansson, E.G., Marshall Jr., E.K., Marvel, C.S., McCoy, O.R., Sapero, J.J., Sebrell, W.H., Shannon, J.A. & Carden Jr., G.A. 1946. Activity of a new antimalarial agent, chloroquine (SN 7618): Statement approved by the board for coordination of malarial studies. Journal of the American Medical Association 130: 1069.

Mandha, S.R., Siliveri, S., Alla, M., Bommena, V.R., Bommineni, M.R. & Balasubramanian, S. 2012. Eco-friendly synthesis and biological evaluation of substituted pyrano[2,3-c]pyrazoles. Bioorganic & Medicinal Chemistry Letters 22(16): 5272-5278.

Meunier, B. 2008. Hybrid molecules with a dual mode of action: Dream or reality? Accounts of Chemical Research 41(1): 69-77.

Mohammat, M.F., Maarop, M.S., Shaameri, Z., Wibowo, A., Johari, S.A. & Hamzah, A.S. 2018. Practical synthesis and electronic study of non-spiro and spiropyrano[2,3-c]pyrazole-3-carboxyate derivatives via uncatalyzed domino one-pot, four-component reactions. Organic Communications 11: 149-162.

Morphy, R. & Rankovic, Z. 2005. Designed multiple ligands. An emerging drug discovery paradigm. Journal of Medicinal Chemistry 48(21): 6523-6543.

Morris, G.M., Huey, R., Lindstrom, W., Sanner, M.F., Belew, R.K., Goodsell, D.S. & Olson, A.J. 2009. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry 30(16): 2785-2791.

Pawar, P., Mane, B., Salve, M. & Bafana, S. 2017. Synthesis and anticonvulsant activity of n-substituted-7-hydroxy-4-methyl- 2-oxa-quinoline derivatives. International Journal of Drug Research and Technology 3(3): 60-66.

Pinzi, L. & Rastelli, G. 2019. Molecular docking: Shifting paradigms in drug discovery. International Journal of Molecular Sciences 20(18): 4331.

Plais, R., Clavier, G., Salpin, J., Gaucher, A. & Prim, D. 2023. Anion-π interaction for molecular recognition of anions: Focus on cooperativity with hydrogen bonding. European Journal of Organic Chemistry 26(9): e202201281.

Qin, H-L., Zhang, Z-W., Lekkala, R., Alsulami, H. & Rakesh, K.P. 2020. Chalcone hybrids as privileged scaffolds in antimalarial drug discovery: A key review. European Journal of Medicinal Chemistry 193: 112215.

Raj, R., Land, K.M. & Kumar, V. 2015. 4-Aminoquinoline-hybridization en route towards the development of rationally designed antimalarial agents. RSC Advances 5(101): 82676-82698.

Ramiz, M.M.M., Hafiz, I.S.A., Rahim, M.A.M.A. & Gaber, H.M. 2012. Pyrazolones as building blocks in heterocyclic synthesis: Synthesis of new pyrazolopyran, pyrazolopyridazine and pyrazole derivatives of expected antifungicidal activity. Journal of the Chinese Chemical Society 59(1): 72-80.

Ravindar, L., Hasbullah, S.A., Rakesh, K.P. & Hassan, N.I. 2023a. Recent developments in antimalarial activities of 4-aminoquinoline derivatives. European Journal of Medicinal Chemistry 256: 115458.

Ravindar, L., Hasbullah, S.A., Rakesh, K.P., Raheem, S., Agustar, H.K., Ismail, N., Ling, L.Y. & Hassan, N.I. 2023b. Exploring diverse frontiers: Advancements of bioactive 4-aminoquinoline-based molecular hybrids in targeted therapeutics and beyond. European Journal of Medicinal Chemistry 264: 116043.

Ravindar, L., Hasbullah, S.A., Rakesh, K.P. & Hassan, N.I. 2023c. Triazole hybrid compounds: A new frontier in malaria treatment. European Journal of Medicinal Chemistry 259: 115694.

Ravindar, L., Hasbullah, S.A., Rakesh, K.P. & Hassan, N.I. 2022. Pyrazole and pyrazoline derivatives as antimalarial agents: A key review. European Journal of Pharmaceutical Science 183: 106365.

Razzaghi‑Asl, N., Sepehri, S., Ebadi, A., Karami, P., Nejatkhah, N. & Johari‑Ahar, M. 2020. Insights into the current status of privileged N‑heterocycles as antileishmanial agents. Molecular Diversity 24: 525-569.

Read, J.A., Wilkinson, K.W., Tranter, R., Sessions, R.B. & Brady, R.L. 1999. Chloroquine binds in the cofactor binding site of Plasmodium falciparum lactate dehydrogenase. The Journal of Biological Chemistry 274(15): 10213-10218.

Sanner, M.F. 1999. Python: A programming language for software integration and development. Journal of Molecular Graphics & Modelling 17(1): 57-61.

Shamsuddin, M.A., Ali, A.H., Zakaria, N.H., Mohammat, M.F., Hamzah, A.S., Shaameri, Z., Lam, K.W., Mark-Lee, W.F., Agustar, H.K., Mohd Abd Razak, M.R., Latip, J. & Hassan, N.I. 2021. Synthesis, molecular docking, and antimalarial activity of hybrid 4-aminoquinoline-pyrano[2,3-c]pyrazole derivatives. Pharmaceuticals 14: 1174-1190.

Shamsuddin, M.A., Zakaria, N.H., Mohammat, M.F., Syahri, J., Latip, J. & Hassan, N.I. 2020. Synthesis and molecular docking studies of pyrano[2,3-c] pyrazole-3-carboxylates as potential inhibitors of Plasmodium falciparum. Malaysian Journal of Chemistry 22: 52-61.

Shruthi, T.G., Eswaran, S., Shivarudraiah, P., Narayanan, S. & Subramanian, S. 2019. Synthesis, antituberculosis studies and biological evaluation of new quinoline derivatives carrying 1,2,4-oxadiazole moiety. Bioorg. Bioorganic & Medicinal Chemistry Letters 29(1): 97-102.

Singh, A.K., Kumar, A., Singh, H., Sonawane, P., Paliwal, H., Thareja, S., Pathak, P., Grishina, M., Jaremko, M., Emwas, A.H., Pal Yadav, J., Verma, A., Khalilullah, H. & Kumar, P. 2022. Concept of hybrid drugs and recent advancements in anticancer hybrids. Pharmaceuticals 15(9): 1071.

Szumilak, M., Wiktorowska-Owczarek, A. & Stanczak, A. 2021. Hybrid drugs-A strategy for overcoming anticancer drug resistance? Molecules 26(9): 2601.

Thomé, R., Lopes, S.C.P., Costa, F.T.M. & Verinaud, L. 2013. Chloroquine: Modes of action of an undervalued drug. Immunology Letters 153(1-2): 50-57.

Tibon, N.S., Ng, C.H. & Cheong, S.L. 2020. Current progress in antimalarial pharmacotherapy and multi-target drug discovery. European Journal of Medicinal Chemistry 188: 111983.

Tse, E.G., Korsik, M. & Todd, M.H. 2019. The past, present and future of antimalarial
medicines. Malaria Journal 18: 93.

Vippagunta, S.R., Dorn, A., Ridley, R.G. & Vennerstrom, J.L. 2000. Characterization of chloroquine-hematin W-oxo dimer binding by isothermal titration calorimetry. Biochimica et Biophysica Acta 1475: 133-140.

Wang, J.L., Liu, D., Zheng, Z.J., Shan, S., Han, X., Srinivasula, S.M., Croce, C.M., Alnemri, E.S. & Huang, Z. 2009. Structure-based discovery of an organic compound that binds Bcl-2-protien and induces apoptosis of tumor cell. Proceedings of the National Academy of Sciences of the United States of America 97(13): 7124-7129.

Uddin, A., Chawla, M., Irfan, I., Mahajan, S., Singh, S. & Abid, M. 2021. Medicinal chemistry updates on quinoline- and endoperoxide-based hybrids with potent antimalarial activity. RSC Medicinal Chemistry 12: 24-42.

Wicht, K.J., Mok, S. & Fidock, D.A. 2020. Molecular mechanisms of drug resistance in Plasmodium falciparum malaria. Annual Review of Microbiology 74(1): 431-454.

Witschel, M.C., Rottmann, M., Schwab, A., Leartsakulpanich, U., Chitnumsub, P., Seet, M., Tonazzi, S., Schwertz, G., Stelzer, F., Mietzner, T., McNamara, C., Thater, F., Freymond, C., Jaruwat, A., Pinthong, C., Riangrungroj, P., Oufir, M., Hamburger, M., Mäser, P., Sanz-Alonso, L.M., Charman, S., Wittlin, S., Yuthavong, Y., Chaiyen, P. & Diederich, F. 2015. Inhibitors of plasmodial serine hydroxymethyltransferase (SHMT): Cocrystal structures of pyrazolopyrans with potent blood- and liver-stage activities. Journal of Medicinal Chemistry 58: 3117-3130.

WHO Malaria Report. 2022. http://www.who.int/teams/globalmalariaprogramme/reports/world-malaria-report-2022 (Accessed in February 2023).

Zakaria, N.H., Lam, K.W. & Hassan, N.I. 2020. Molecular docking study of the interactions between Plasmodium falciparum lactate dehydrogenase and 4-aminoquinoline hybrids. Sains Malaysiana 49(8): 1905-1913.

Zubir, N.M., Abd Razak, M.R.M., Ali, A.H., Mackeen, M.M. & Hassan, N.I. 2022. Konsep penghibridan 4-aminokuinolina sebagai alternatif agen antiplasmodium. Sains Malaysiana 51(10): 3463-3479.

 

*Corresponding author; email: drizz@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next